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There has been much literature on ecological model of Prisoner’s Dilerama game. So far, the strategy of All Cooperate {AC,
indicating the “Golden Rule") has been considered to be inferior to other strategies, especially to All Dafect (AD, a selfish
strategy)- However, in the present articie, I demonstrate that AC beats AD completely. To this end, T study metapopulation
dynamica by applying island and lattice models, where each patch is assumed to be either vacant or composed of a population of
AC or AD. It is found that both models exhibit a phase transition: AD completely disappears. For the lattice model, two causes of
phase transition are illustrated: ij extinction rate of AD patch becomes high, and #) colonization rate r of AC becomes low. The
former cause is possible to cccur, since the AD population gains the least fitness. The latter cause, which canmot be predicted by
the island model nor by theory of pair approximation, includes counterintuitive response: Al} disappears in spite of the increase
of the density of AC patches. Psychological and biological meanings of results are discussed.

1. INTRODUCTION nlation of the latter sirategy is very poor, so that the
patch of AD may be extinet during a long time. On
the contrary, AC gets the highest fitness in its com-
munmity. At a local scale, in other words, inside a sin-
gle patch, AD beats AC, but at a regional (metapop-
vlation) scale, AC may beat AD completely.

In order for a population te survive, it is

Many forms of cooperation emerges in human and
non-human societies without ceniral amthority. A
Prisoner’s Dilemma game {Axelrod, 1884; Nowak
& May, 1992) clearly illustrates that cooperation
does occur in situations where individuals tend e
look after themselves and their own first. Ti-For- * v s i
Tat (TFT) and PAVROV (Kraines & Kraines, 1993; necessary that the populat{ox_: size I sufficiently
Nowak & Sigmund, 1993) may be an effective strat- 1?'1'5? than the so-called “minimum viable popula-
egy against an egoisi to use. However, they are tion (MVP) (Soule, 19_87)“ The MVP size surely
not a moral standard for a person to follow: TFT differs for different species, whereas recent empiri-
and PAYROV are based on “revanchism.”  Per- cal works for MVP suggest that the MVP size may
..haps.the most widely accepted moral standard is. - be very large (Thomas,lQQO,Wﬂcove et al, 1993).
the “Golden Rule”: do unto others as you would Moreover, many authors have pointed out that by the
have them do unto you. In the context of the Pris- -~ b€ a species is listed as “endangered”, its numbers
oner’s Dilemma, the Golden Rule would seem to im- have fallen well below a sustainable population size

ply that you should always cooperate. This interpre- {Noss and Murp-hy, 1895). :Hence, 1t 8 not so easy for
tation suggests that the best strategy from the point & smell population !;ca_ survive for a long tlmne - Since
of morality is the strategy of All Cooperate (AC). the strategy EMS gains the largest value of fitness,
Nevertheless, heretofore, AC has been considered to it Is relatively easy to survive. Moreover, individuals
be inferior to other strategies, especially to All Defect of EMS may migrate into another vacant patch and
(AD, » selfish strategy). The purpose of the present reproduce a new EMS paich (colonization).

article 18 to illustrate that AC completely beats AD
in a certain environment,

In the present paper, I 2pply an idea of “evolu-
tionarily maintainable strategy”(EMS) (Tainaka &
Araki, 1999), where EMS is defined by the strategy
that gains the highest pay-off (fitness) in a popula-
tion of a single strategy. It is easily proven from
the definition (1) that EMS is represented by AC.
HNote that EMS differs from “evolutionazily stable
strategy” (ESS) (Maypard Smith, 1989); while ESS
is not beaten by any other strategy, EMS Is invaded
by some cther strategies. Nevertheless, this cutcome
doea. not always hold, especially in.a patchy enwi-
ronment: for instance, we consider that a bicspecies
lives in some paiches, and assume that interaction
between different patches rarely cecurs. The patch
oecupied by AC will be inveded by 2 certain strategy,
say AD. However, the total fitness gained in the pop- FIG. 1 Several patch models.
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Several models at the regional (metapopulation)
scale have been presented (Hanski & Gilpin, 1887,
Maynard Smith, 1989}, I use the island {Levins,
1969) and lattice models (Fig. 1). The Lotka-
Volterra equation (LVE) (Hofbawer & Sigmund,
1988) is applied to the former, and “lattice Lotka-
Volterramodel® {LLVM) (Tainaks, 1988; 1993; Mat-
suda, et al., 1992) is applied to the latter.

2. BModel and bMethod

2.1 PATCH MODEL

We assume that a target biospecies lives in a patchy
environment, and that interaction between different
patches rarely occurs. In each patch, the Prisoner’s
Dilemma game 15 played by a pair of individuals.
Then, 2 single patch will be dominated by a certain
gtrategy in a relatively short period. Each patch i
assumed 0 be ejther vacant or composed of a popu-
lation of All Cooperate {AC) or All Defect {AD). We
study the following cyclic system:

AD+AC-2-24D, (1a)
AC+0-1s24C, (1)
AD %0, {1c)

where O represents a vacant patch. Above system
i$ based on the actual moves of Prisoner’s Dilemma
game. The first reaction (la) denotes the following
meaning: If few individuals of AD migrate mto a

AC patch, then the population size of AD (AC) im-

 mediately increases {decreases) in this patch. The
AC paich 18 easily invaded by AD. The parameter
p thus means the probability (rate) that the inva-
sion of AD occurs. The second reaction {1b) means
the colonization of AC: if some mdividuals of AC
migrate into a vacant sile, its population size may
grow up. Namely, the process (1b) denotes the re-
production of AC patches. The last reaction {ic)
represents the extinction of a habitat of AD. Since
the AD population gaina the least value of fitness,
it i1 very hard for this population to survive for a
long time. The parameters r and £ respectively de-
note the colonization (reproduction) raie of AC and
the extinction (death) rate of the AD patch. When
the size of minimum viable population (MVP)} of the
target species is large, then d takes a large value.
The model (1) is essentially equivalent to the prey-
predator {(host-parasite) model in an ecosystem {Hof-
bauer & Sigmund, 1988; Tainaka & Fukazawa,1992;
Tainaka, 1994; Satulovsky & Tome, 1994; Sutheriand
& Jacobs,1994); the strategies AC and AD respec-
tively correspond to prey and predator.
2.2 SIMULATION METHODS

First, { explain the simulation method of the lattice
model (LLVM):

1} Initially, we distribute two kinds of strategies, AC
and AD, over somne square-lattice zites; sach lastice

B T

gite is, therefore, labeled by one of three states (AC,
AD, or O},

2} Reactions {1) are performed in the following two
processes.

(3} First, we perform swo-body reactions, namely, re-
actions {la} and {1b). Choose one lattice site ran-
domiy, and then specify one of four nearest-neighbor
gites. Let them react according to {1a) and (1b). For
exampie, if you pick up a pair of sites labeled by AC
and AD, the former site will become AD by a prob-
ability (rate) p. Here we employ periodic boundary
conditions.

{1} The process (1c) is performed. Choose one lattice
site randomly: i the AD site is picked up, it will
become O by the rate d.

Next, T explain the simulation method for the 1s-
land model. The above steps 1) and 2} are the same
for this model, but the process (i) at step 2) should be
replaced. (i} Choose two lattice siies randomly and
independently, and let them react according %o {1a}
and {1b). Hence, spatial dimension becomes mean-
ingless for the island model. When the number of
total lattice sites {L?} is sufficiently large, the pop-
ulation dynamics is expressed by a Lotka-Volterra
equation (LVE).

3. HResult of Island Model
The basic equations for the island model are

Pac = A —pPacPap + rPacFo), (2a}

Pap = 2pPacPap ~ dPap, {26)
gy

where the dots denote the derivative with respect to

the time { which is measured by the Monte Carlo step
(Tainaka, 1988), and P; is the density of strategy ¢
(i =AC, AD, O). Note that the following relation
hold:

P =1 {3)

Each term in (2) comes from each reaction in (1}. For
example, the first term in the right-hand side of (2a)
is originated in the reaction (1a), where the factor
2 denotes that there are two ways for the left-hand
side of (1a); that is, ACH+AD and AD+AC. Similarly,
the second term of (2a) comes from (1b), and so on.
The relation (2) is called the Lotka-Volterra equation
{LVE). In the below, we set p = 1: even when p
takes ancther value, the basic equations of p = 1 is
unchanged by selecting a suitable time scale.

The steady-state sohstion can be obtained by set-
ting all the time derivatives in (2) io be zeror it fol-
lows that

d 1“(1 '—"PAC} .1..—.?&,0 .
—-— =, Py =——
1+r
(4)
According to the linear stability analysis the densi-

ties of both strategies reach the stationary values (4}
in the case d < 2 {stable focus). When d > 2, we
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have Pac = 1 and Fap = 0. Heace, LVE exhibits
2 phase transition between a phase where both AC
and AD survive (d < 2}, and 2 phase where AD is
extinct {d > 2). The phase boundary is represented
by dy = 2. Namely, AC beats AD completely, when
d > 2. Recall that d denotes the extinciion rate of
AD patch. The extinction of AD may occur, since
the AD population gains the least value of fitness.
On the other hand, AC goes extinct, only if 4 — 0,
or only if the size of MVP is sufficiently small.

So far, the number of total lattice sites {L?) was
assumed to be sufficiently large. In this case, the
average densities (4) in final stationary state never
depend on both densities Py and Pap at ¢ = 0 {ini-
tial condition}. Mow, we consider the case that L2
takes a small value. Then, the dynamics becomes a
stochastic process, and it depends on the initial con-
dition; elther strategy AC or AD which has a lower
density in stationary state tends to go extinet. Equa-
tion (4) reveals that Pac < Pap ford < 2r/(1+32r) :
when d takes a small value, AC often goes extinct.
Tt is, however, emphasized that AD cannot survive
without AC (except for d — 0); in other words, AD
immediately goes extinct after the extinction of AC.,
On the contrary, in the case of a large value of 4, the
strategy AD often goes extinct. After this extinction,
AC occupies the whole patches. Note that AC can
survive im the absence of AD. It i, therefore, com-
cluded that for a small value of L7, the strategy AD
cannot survive except for the limiting case d — 0.

4. Result of Lattice Model

The basic equations for LLVM are
Pac = —2Psc.an + 2Pico, {6a)
Pap = 2Pac.ap — 4Pap, (68)
Po = —2rPac,o + dPap, {(8e)

where P ; denotes the two-body density finding a
sirategy 1 at a lattice site {patch} and a strategy
j at its adjacent site {({,j =AC, AD, O). Here we
put p = 1. Note P ; differs from the conditional
probability. The relations
P,',j = PJ‘,,‘, Ejp;’,j = F; {7)
thus hold. The basic equation {6} for the lattice
model cannot be solved. The first and crude ap-
proximation to solve {6) is the mean-field theory:

Fi= P;pj.

. Inserting above equation into (8}, we have the basic

equationg {3) for the isiand model.

42 DEPENDENCE OF d
Simulations for lattice model {LLVM) are carried out
for various values of the parameters d and r {Tainaka
and Fukazawa, 1992). It s found from the simulation

that the population dynamics exhibits the stable fo-
cus as predicted by the island model (LVE). The lat-
tice system evolves into 2 stationary state, where the
population size of both strategies becomes constant
in time. In Fig. 2, the steady-state densities of Pac
and Pap are reapectively plotted against d. The PA
theory in these figures is described in Appendix. It
iz found from Fig. 2 that the phase transition oceurs
as predicted by the island model {LVE); the strat-
egy AC occupies the whole patches, when d exceeds
a critical value dy. However, this figure reveals that
the density of the AC paich (AD} patch} for LLVM
is significantly higher (lower) than the prediction of
island model; the eritical value for LLVM {dy ~ 0.9)
ig much smaller than the prediction of LVE {dp = 2).
Moreover, in the case of lattice model, we notice a
counierintutiive response never seen in island model:
even if the value of d decreases and approaches zero,
the density P, decreases.

4.3 DEPENDENCE OF »

Mext, we fix d, and change the parameter » (Tainaka,
1994). In Fig. 3, the steady-state densities of Pac
and Pap is plotted against the colonization rate r of
AC, where we get d = 0.6. This figure reveals the
following results:

i) The density of AC (Pyc) increases in spite of the
decrease of r. In particular, when r approaches rg
from above (ry ~ 0.17), the AC population abruptly
increases.

i) The density Pap for the lattice model (LLVM} is
much lower than the prediction of LVE or PA. Espe-

_cially, when r < ro, AD disappears (extinct phase).

Thus, ry represents the critical value between the
survival and extinct phases.

Such a phage transition is never explained by LVE
nor PA. We notice that the phase transition is
caused by a counterintuitive sitwation: AD com-
pletely disappears, even though the number of AC
paich abruptly increases. This counterintuitive re-
sponse indicates the superiority of AC in the Fris-
oner’s Dilemma game.

44 CLUSTER FORMATION
Spatial pattern is also self-organized into a quasi-
stationary state, but the configuration of patch dis-
tribution dynamically varies. To know the spatial
correlation, we define the ratio of joint probabilities
as follows (Tainaka & Fukazawa,1992):

Ry = P/ B (7

For the random distribution, we bave & ; = 1. The
quantity F; ; represents how the distribution is devi-
ate from the random distribution. In particular, By ;
represents the clumping degree of sirategy 1: when

‘R > 1 (R < 1), the distribution of this-strategy

is clumped (uniform).

The relation between Hag; and d is depicted in
Fig. 4. Tt is found thai the values of Ay are
remarkably different from those of random distribu-
tion (unity). Especially, when d approaches gero,
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FI1G. 2 The steady-state densities of AD and AC patch are plotted against the extinction rate
(d) of AD patch {r = 1). Each plot is obtained by the long-time average in the period
200 < ¢ < 1000 with the square lattice (100 x 100), where the time ¢ is measured by
the Monte Carlo step. The symbols ISLAND and PA by the solid curves represent
the island model and pair approximation {see Appendex), respectively.

FIG. 3 The steady-state densities are plotted against

(-
pH the reproduction (colonization) rate of AC (r), where
£ we put d = 0.6. The symbols ISLAND and PA rep-
2 resent the same meanings as described in Fig. 2.
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the quantity fac ac becomes much larger than unity
and satisfies

(8)

This resuli means that the degree of contagiousness
of AC becomes rapidly high for d — 0. Endangered
apecies thus forms clumps. Similar clumping forma-
tion i8 observed for AD patches: In Fig. 5, Rap ap
is depicied against r — rp, where we use vg = 0 for
PA and rg = G.17 for LLVM. We find from Fig. 5

that
Rapap x{r—m)™?, B~1 (%)

This resalt is also proven by the pair approxima~
tion {PA: Appendix). Clumping behavior (9} well
explains the abrupt increase in AC population: If r
approaches ry from above, AD patches are strongly
cluraped, so that they cannot easily catch AC. Thus,
the PA model gualitatively account for the increase
of Pyc. However, the phase tramsition {exiinction
of AD} observed in the simulation result {Fig. 4)
cannot be explained by this approximation.

Racacxd ®;a~1.

5. Concuding Remarks

All Cooperate (AC) iz the evolutionarily maintain-
sble strategy (EMS) which gains the highest score
in a population of a single strategy, so that AC may
become the strongest strategy in a certain environ-
ment. In the present article, I present island and
latfice models to study metapopulation dynamics.
These models are essentially equivalent to the prey-
predator {host-parasite} system The conclusion in
the present article is, however, different from the pre-
vious works. 1t is found that both island and latiice
models exhibit the phase transition between a phase
where both AC and AD survive, and a phase where
AD s extinct. The latter phase means that AC beats
AD completely.

Ir the case of island model, the phase transition
{extinction of AD) occurs, only when the extinetion
rate (d) of the AD habitat exceeds a critical value
(d > dy: dg = 2). Such a transition is possible to
occur, since the AD} population gains the least fit-
ness. For the latiice model, the same caunse of phase
transition is confirmed (Fig. 2); the critiecal value
takes a smaller value than LVE (dg ~ 0.9). More-
over, n lattice model, we observe another cause of
phase transition: AD disappears, when the coloniza-
tion rate {r) of AC becomes below a critical value
(r < ro: 7¢ ~ 0.17) {see Fig. 3). The latter pbase
transition is related to the cluster formation of PD
patches (Fig. 5).

Our patch dynamics belongs in the class of gronp
selection. Actrally, AC {or AD) minimizes (or max-
imizes} the extinction rate of its habitat. Neverthe-

-less, our theory has distinct properties never geen in .

the previous theories of group selection {Eshel, 1972;
Aoki, 1982): '

1} I point out the role of minimum viable population
{(MVP), and account for the reason why the extine-
tion rate of AD habitat takes a high value.
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2) 1 demonstrate that AC can beat AD completely.
Similarly, I can show that the former beats any other
strategy; the extinction (colonization) rate of AC
population takes the highest (lowest) value among
all strategies. It may be impossible 1o prove this
by usuazl theories of individual selection (Maynard
Smith, 1989).
3) Since EMS ig defined by the strategy which gains
the highest fitness in 2 single strategy, it is never
contrary to an essence of the individual selection.

In the present paper, I demonstrate that AC is
superior to any other strategy. This result has psy-
chological and biological meanings: Golden Raule in
human society may become the best sirategy in a
certain condition. T assume that individuals {people)
live in a patchy environment; the residence {commu-
nity) of AD is separated from that of AC. This as-
sumption may be plausible in 2 human society: when
a person (A) is defected by another person (B), then
A will avoid to make a friend with B in most cases.
The strategies of AC and AD often form patch-like
communities. Hence, the evolution of Golden Rule is
possible to occur in human societies.

Finally, we discuss other assumptions contained
in this paper:
1) The interaction (migration) between different
patches is assumed to occur rarely. If migration fre-
guently occurs, all patches are effectively connected.
In this case, AD beats AC completely.
2) In the system (1}, we neglect the colonization pro-
cess of AD. If the MVP sgize of the target species
takes a small value, then we cannot neglect the colo-

uization process. Even in this case; AC can win the

game.
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APPENDIX: PAIR APPROXTMATION {PA)
In the case of lattice model, the evolution equations for the
two-body densities are

Pac,ac = rPac,o +3rPLc ac — PE§ Al {Ala)
Pap.an = Pac,ap ~ 2¢Psp an +3PF) ap- {A1b)
Po,o = 2dPap,o ~ r3Pfc'o, {Alc)

2Pac,an = ~2dPac,ap — Pac,ap
c
+3[PRS ap + TPrc.an — PRS aph {Ard)
2Pap,0 = 2d(Pap ap — Pap,o}

+3[Pfp o ~ 7PLc an) {Ale)
2Pac,0 = UdPyc.an —rFaco

A +3[rPic o ~ TPic ac — Pab.ol: {A1])
where P;.  Genotes three-body probability finding & strategy

" at&smem swew}maka’tu - gnmg-h - Gftm SR

gite. Similarly to (T}, the following relations hold:
P,;.k = P,:J, EuPl = Py
The pair approximation (PA) is defined by:
Plx=FiiFix/Pi (A2}
Setting all the time derdvatives in {A1) to be zero, we have
(d — 0)
RBacacxd ™ a=1. (A3}
Similarly, we prove (3): the critical point is given by rp = 0,
so that we get
RBapap x{r—m) 8, f=1 {44)
According to the PA model, the critical exponenis o snd 3
talke the same value.

~ 728 =

[y . .
®
Lo -t XR-\CACE X
H xx
| ORco| <
i RANDOM F'Y
2 Rp / KXX
1{}0 # Hog,
O O gagmg 89O Cng
. ®® ® o Ewhgy
4 @ 5599
!O‘i
i
3.005 G.43 3.3

EXTINCTION RATE (4}

FiG, 4 The ratios of joint probabilities Rac ac,
Rac ap and Rac o are shown against d, where the
plots represent the simulation result of lattice model
(LLVM). These quantities are defined by eqn (8); in
particular, fiac ac represents the degree of clumping
of AC. If the distribution of AC and AD patches is
random, then K;; takes the value of unity for any
pair of { and j (4,7 =AC, AD, O).
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FIG. 5 For the latsice model {(LLYM), the relation
between Eap ap and 7 — rp i8 displayed. The ratio
Rap ap represents the degree of clumping of AD.
The solid curve is the theoretical prediction of PA. 1
use rg = 0 for PA, and #g = 0.17 for LLVM.



